Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
JCI Insight ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2235313

ABSTRACT

Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from severe COVID-19 patients every third to seventh day during hospitalization and every third month after recovery. We profiled the antigen-specific immune cell dynamics by combining single cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE)-Seq, B cell receptor (BCR)-Seq with oligo-tagged antigen baits. While the proportion of Spike Receptor Binding Domain-specific memory B cells (MBC) increased from 3 months after infection, the other Spike- and Nucleocapsid-specific B cells remained constant. All patients showed ongoing class switching and sustained affinity maturation of antigen specific cells, which was not significantly increased early after vaccine. B cell analysis revealed a polyclonal response with limited clonal expansion; nevertheless, some clones detected during hospitalization, as plasmablasts, persisted for up to one year, as MBC. Monoclonal antibodies derived from persistent B cell families increased their binding and neutralization breadth and started recognizing viral variants by 3 months after infection. Overall, our findings provide important insights into the clonal evolution and dynamics of antigen specific B cell responses in longitudinally sampled COVID-19 infected patients.

SELECTION OF CITATIONS
SEARCH DETAIL